ATFL Repair Alone versus Combined Repairs of ATFL and CFL: A Biomechanical Comparison of Repair Techniques

KENNETH J HUNT, MD
Nicholas Anderson, BS;
Judas Kelley, BA;
Richard Fuld, BA;
Todd Baldini, MSc;

Project Funded by ISAKOS Research Grant
Study performed at Department of Orthopaedic Surgery - Bioengineering Laboratory, University of Colorado School of Medicine, Aurora, Colorado, USA
I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

AAOS Orthopaedic Disclosure Program on the AAOS website at
http://www.aaos.org/disclosure

Relevant:
Project Funded by ISAKOS Grant
Implants Donated by Zimmer-Biomet
Background

- Ankle Ligament Injuries are common
- Higher energy injuries result in injury to both AFTL and CFL
- Arthroscopic ATFL repair techniques have become increasingly popular
 - Most arthroscopic techniques do not address the CFL
 - The impact of CFL repair is not well understood
Objective

- The purpose of this study was to assess the impact of repairing the ATFL alone compared to repairing both the ATFL and CFL
- Simulated arthroscopic technique
- Cadaver model
Objective

• We hypothesized that repairing ATFL and CFL will improve ankle and subtalar joint stability during weight-bearing ankle inversion compared to ATFL repair alone.
Methods

- Ten matched pair fresh frozen human cadaveric ankles were mounted to an Instron in 20° plantarflexion
- Body weight load applied
- Inverted to 20° for three cycles
- **Torque, stiffness** and **displacement** recorded
- ATFL and CFL were sectioned
Methods

• Specimens randomly assigned to ATFL only repair using two all-soft anchors, or combined ATFL and CFL repair

• Testing was repeated after repair, followed by load-to-failure (LTF)
Data Collection and Analysis

- **Instron:**
 - Stiffness
 - Change in torque
 - Load at failure

- **Motion capture**
 - Medial displacement
 - Inversion angle
Results

- The predominant mode of failure was tissue/suture
 - No anchors pulled out of bone
- Strong correlation between stiffness of intact specimen and stiffness after repair ($r=0.77$)
Stiffness

• We found an 11.7% increase in stiffness in combined repairs, and only a 1.6% increase in ATFL-only repairs.
Load to Failure

- CFL failed first in all specimens
 - 28 degrees inversion
 - 13.4 N*m torque
- ATFL failure
 - 43.7 degrees Inversion
 - 20.8 N*m torque
- Higher failure torques*

Giza et al, 2015, Foot Ankle Int
Motion Capture

• **Medial translation** of the calcaneus relative to the talus was significantly less after ATFL and CFL repairs.
Motion Capture

• **Medial translation** of the calcaneus relative to the talus was significantly less after ATFL and CFL repairs.

• Ankle Inversion angle increases after ligament injury.
 • Not restored with either repair.

• Subtalar Inversion angle of the increases after ligament injury.
 • Partially restored with combined repair.

- Intact
- ATFL and CFL release
- ATFL repair
- ATFL and CFL repair

<table>
<thead>
<tr>
<th></th>
<th>Intact</th>
<th>ATFL and CFL release</th>
<th>ATFL repair</th>
<th>ATFL and CFL repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion angle of Ankle Joint</td>
<td>4.385</td>
<td>5.98</td>
<td>6.20</td>
<td>NS 5.59</td>
</tr>
<tr>
<td>Degrees</td>
<td>4.39</td>
<td>5.98</td>
<td>6.20</td>
<td>NS 5.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intact</th>
<th>ATFL and CFL release</th>
<th>ATFL repair</th>
<th>ATFL and CFL repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion angle of Subtalar Joint</td>
<td>4.39</td>
<td>5.98</td>
<td>6.20</td>
<td>NS 5.59</td>
</tr>
</tbody>
</table>
Summary

• CFL repair has advantages during load bearing inversion:
 • Increases stiffness
 • Reduces medial translation of subtalar joint
• No clear advantage to CFL repair with ankle or ST inversion angle
• Important Considerations:
 • We tested full load bearing
 • We tested repair only without healing
Summary

• CFL failed first during weight-bearing inversion
• ATFL failed at a higher torque than previous study of Arthroscopic Brostrom technique*
 • Complimentary contribution of CFL
• A specimen’s inherent tissue laxity or stiffness was a predictor of stiffness after repair

*Giza et al, 2015, Foot Ankle Int
Conclusions

• Restoring CFL plays a relevant role in lateral ligament repair
 • However, sufficient time for ligament healing should be allowed before inversion stresses are applied
• More study is needed to investigate the clinical results of CFL repair vs ATFL repair alone
Acknowledgements

• ISAKOS Research Grant
• ISAKOS LAF Committee
• University of Colorado Biomechanics Laboratory
• Pam Kumparatana (stats)
• Zimmer-Biomet (implants)
Thank you