Simulated Weight Bearing and Articular Injury From Transarticular Screws in a Ligamentous Lisfranc Injury Model

Robert G. Dekker II, M.D.A, Stephan Zmugg M.D.B, Bryant Ho M.D.C, Muturi G. Muriuki, P.h.D.D, Robert M. Havey, M.S.D,E, Avinash G. Patwardhan, P.h.D.D,E, Anish R. Kadakia, M.D.A

ADepartment of Orthopaedic Surgery, Northwestern University
BDepartment of Orthopaedic Surgery, Texas Scottish Rite Hospital
CHinsdale Orthopaedics, Chicago, IL
DEdward Hines Jr. VA Hospital
EDepartment of Orthopaedic Surgery, Loyola University Chicago
I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

“My Academy” app;

Printed Final Program; or

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

- Optimal treatment of Lisfranc injuries is controversial
- Morbidity from transarticular screws may lead to symptomatic arthritis, complications from broken hardware and further surgery
- Articular injury from transarticular screws has been shown
- Other treatment options, such as dorsal locked plating offer unique advantages over transarticular screw fixation
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

Objectives

- Create a cadaveric ligamentous Lisfranc injury model
- Measure articular injury from transarticular screw placement before & after simulated weight bearing
- Compare rigidity of screw fixation and dorsal locked plating by measuring diastasis and total relative rotation between several bony landmarks
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

Methods

• Ten fresh frozen cadavers (20 specimens)
• Randomized to transarticular screw fixation vs. dorsal locked plating
• Cyclic loading of specimen
• Rotation and diastasis between 4 points measured (C1, C2, M1, M2)
• Digital photographs were used to calculate articular surface damage (%)
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

20 cycles in native state → In situ/anatomic screw vs plate fixation → 20 cycles in disrupted state → Lisfranc Fixation → 20 cycles with fixation → 1,000 cycles

- Hardware removal
- Photos taken
- Lisfranc Injury Created
- Lisfranc arthrotomies completed
- Photos taken
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

Results

- After ligament sectioning, significantly increased motion was seen in our model to suggest successful creation of Lisfranc injury
- A significant increase (44%, p<0.0001) in articular injury from transarticular screw fixation occurred after simulated weight bearing

<table>
<thead>
<tr>
<th>Surface</th>
<th>% injury Pre-</th>
<th>% injury post-</th>
<th>Relative Increase in Articular injury</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2.97%</td>
<td>4.26%</td>
<td>43.51%</td>
<td>0.0387</td>
</tr>
<tr>
<td>M1</td>
<td>2.96%</td>
<td>3.99%</td>
<td>34.71%</td>
<td>0.0083</td>
</tr>
<tr>
<td>C2</td>
<td>3.41%</td>
<td>4.92%</td>
<td>44.24%</td>
<td>0.0292</td>
</tr>
<tr>
<td>M2</td>
<td>3.13%</td>
<td>4.81%</td>
<td>53.89%</td>
<td>0.0047</td>
</tr>
<tr>
<td>All Surfaces</td>
<td>3.11%</td>
<td>4.49%</td>
<td>44.22%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

Results

- After surgical fixation, plated specimens had a higher total relative rotation between C1 and M2 (+2.3°, p=0.008), and between C1 and C2 (+2°, p=0.02)
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

Results

- After surgical fixation, plated specimens had a greater increase in diastasis between C1 and M2 (0.8 mm vs. 0.3 mm, p = 0.019)

<table>
<thead>
<tr>
<th>Increase in Diastasis</th>
<th>Plate</th>
<th>Screw</th>
<th>Statistical difference between groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (SD)</td>
<td>Range</td>
<td>Average (SD)</td>
</tr>
<tr>
<td>C1 - M2 interface</td>
<td>0.8 (0.9) mm</td>
<td>0 to 3.2 mm</td>
<td>0.3 (0.3) mm</td>
</tr>
<tr>
<td>C1 - M1 interface</td>
<td>0.1 (0.2) mm</td>
<td>0 to 0.7 mm</td>
<td>0.3 (0.3) mm</td>
</tr>
<tr>
<td>C2 - M2 interface</td>
<td>0.2 (0.3) mm</td>
<td>0 to 0.9 mm</td>
<td>0.1 (0.1) mm</td>
</tr>
<tr>
<td>M1 - M2 interface</td>
<td>0.2 (0.4) mm</td>
<td>0 to 1.0 mm</td>
<td>0.3 (0.4) mm</td>
</tr>
<tr>
<td>C1 - C2 interface</td>
<td>0.6 (0.5) mm</td>
<td>0.2 to 1.6 mm</td>
<td>0.1 (0.2) mm</td>
</tr>
</tbody>
</table>
Conclusions

• Articular injury from transarticular screws increased after simulated weight bearing

• Based on our results, transarticular screws appear to be slightly more rigid than dorsal locked plating
 – Further investigation is warranted to determine the clinical significance of this small difference

• Dorsal locked plating alone may be insufficient to restore stability to the Lisfranc complex and an additional ’Lisfranc’ screw may be beneficial
 – Previous assumptions may be incorrect
 – This would still be an ‘extra-articular’ construct

• While each fixation strategy has its own advantages, the lack of articular injury with dorsal locked plating should be considered when deciding between these treatments
Simulated Weight Bearing and Articular Injury from Transarticular Screws in a Ligamentous Lisfranc Injury Model

References