Pre-operative templating in total ankle replacement

Mr Adam Farrier, Dr Justin Green, Ms Jayasree Ramaskhandan, Mr Malik Siddique,

Freeman Hospital, Newcastle upon Tyne, UK
Disclosure

NO CONFLICT TO DISCLOSE

Pre-operative templating in total ankle replacement Arthrodesis

Mr Adam Farrier MBChB MRCS
Dr Justin Green MBBS
Mr Malik Siddique MBBS FRCS (Orth)
Ms Jayasree Ramaskhandan

Our disclosures are in the Final AOFAS Mobile App.

We have no potential conflicts with this presentation.
Background

• Total ankle replacement (TAR) is a relatively uncommon joint replacement procedure.
• Only 631 TAR operations were performed in the UK in 2014. (1)
• Popularity is increasing as a suitable alternative to ankle fusion in patients with end stage ankle arthritis. (2)

• Pre-operative templating using plane radiographs is of great importance in planning arthroplasty of the hip and knee. (3) Its role in total ankle arthroplasty (TAR) is less clear.

• It is hypothesised that:
 – Being able to use the best fitting implant is of paramount importance for transferring loading forces through the ankle joint.
 – This may contribute to the longevity of the TAR prosthesis.

• It is unclear whether pre-operative templating is more accurately performed using an AP radiograph or 3-Dimensional (3D) imaging using MRI or CT.
Templating

- The objectives of digital templating are:
 - to improve the preoperative planning in order
 - to reduce intraoperative errors concerning implant sizing, alignment and fit
 - giving the opportunity to prepare excess components for the operation room.

- A cost efficiency would be seen by reducing the surgical trays used

- Our Aim was to compare the accuracy of preoperative templating using an AP radiograph versus 3-Dimensional imaging using a CT/MRI, in predicting the size of the implanted prosthesis.
Methods

• Patients undergoing TAR with BOX® mobile bearing prosthesis (MatOrtho™, Surrey, UK) between July 2014 and September 2015 were included in the study.

• Data was collected prospectively using a TAR database and included:
 – Patient demographics
 – The implant size used for both Tibial and Talar components (small, medium or large) and the polyEthylene liner size.

• Although pre-operative AP radiograph templating had been performed and recorded on the database we reviewed all Imaging and re-templated retrospectively using the INFINITT® PACS system

• All images had been appropriately calibrated

• Patients were included in the study if they had undergone pre-operative plane radiographs and 3-Dimensional imaging such as an MRI or CT

• Patients were part of an on-going clinical trial which has ethics committee approval
Templating

• To overcome both inter-observer and intra-observer bias these scans were:
 – Reviewed retrospectively by two separate authors (AF and JG) assessing for:
 • Tibial and Talar width on the AP radiograph (figure 1).
 • Tibial and Talar width in the Coronal plane at the midpoint of the Tibia in the Sagittal plane (figure 2).
 – The measurements were repeated after one month with the patients randomised and the authors blinded to the previous measurements.
 – A third author (MS), the lead surgeon, resolved any disagreements on measurements.
 – The authors were blinded to the implant size used.
Figure 1. Tibial and Talar Width on AP Radiograph
Figure 2. Tibial and Talar Width on MRI
Results

• 29 patients undergoing TAR with BOX™ TAR between July 2014 and September 2015 were identified for potential inclusion in the study.

• 26 patients in this cohort underwent pre-operative CT or MRI assessment and were suitable for inclusion in the study (CT=6, MRI =20).

• Templating the Tibial width on AP radiograph predicted the implant size 33.7% of the time while using CT/MRI scan predicted the implant size correctly 60.6% of the time.

• Templating the Talar width the AP radiograph predicted the implant size 46.2% of the time while using CT/MRI scan predicted the implant size correctly 66.4% of the time.

• The odds ratio for CT/MRI predicting the implant correctly over the AP radiograph was 3.02 (CI = 1.7 – 5.3) for the tibial component and 2.14 (CI = 1.22 – 3.7) for the Talar component.
 – These values were statistically significant (P<0.05)
Conclusion

• Templating the pre-operative images we found 3D templating with an MRI or CT scan to be significantly more accurate for predicting correct implant size, compared to an AP radiograph.

• We advise the use of MRI or CT as the most effective way to plan for TAR. MRI and CT are now frequently performed in orthopaedic centres as routine investigations.

• These modalities have the added benefit of assessing surrounding joints and soft tissues to aid accurate diagnosis.

• The limitations of this study lie in the small sample size and the retrospective methodology.
1. Registry NJ. National Joint Registry > Healthcare providers > Accessing the data > StatsOnline > NJR StatsOnline. 2015.
