A Novel Stocking to Improve Venous Return Compared to the Class 1 Compression Stocking

Arjun C. Paramasivan, MBChB
Kandasamy Sampathkumar, MBBS, FRCS (Tr & Orth)
NO CONFLICT TO DISCLOSE

A novel stocking to improve venous return compared to the class 1 compression stocking.

Arjun C. Paramasivan, MBChB
Kandasamy Sampathkumar, MBBS, (Tr & Orth)

Our disclosures are in the Final AOFAS Mobile App.
We have no potential conflicts with this presentation.
Venous thromboembolism (VTE) is a serious risk of major orthopaedic surgery, associated with significant morbidity and mortality \(^1, 2, 3, 4\). Current clinical practice promotes the use of mechanical thromboprophylaxis. Class 1 compression stockings are commonly used as they encourage early ambulation and have few complications \(^5\).
Class 1 compression stockings work well during movement, however their effectiveness deteriorates when partially or fully immobile. The novel device uses compression and toe movements.

- Repetitive flexion and extension of the toe:
 - Stimulates the plantar venous plexus
 - Activates the foot and calf pumps when patient is bed-bound
 - Results in an increase in venous velocity.
Purpose

• The purpose of this study is to determine if the addition of a novel device to the conventional class 1 compression or thrombo-embolic deterrent (TED) stockings improved venous return.

• Prospective study: 10 healthy volunteers

• Primary outcome measure: Ejected venous volume (ml)
Methods

• Duplex Ultrasound Scanning
• Doppler Waveform recorded
• Venous haemodynamic parameters measured to calculate ejected venous volume:
 1. Peak venous velocity
 2. Intensity weighted mean velocity
 3. Blood vessel cross-sectional area
Methods

• Study groups:
 1. Femoral venous return volume at resting position (supine)
 2. Femoral venous return volume with compression stockings (supine)
 3. Femoral venous return volume with novel and compression stockings (supine)
Results

Right Leg (n=10)

<table>
<thead>
<tr>
<th></th>
<th>Baseline (ml)</th>
<th>TED (ml)</th>
<th>TED + Novel Device (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.84±0.60</td>
<td>6.02±0.51</td>
<td>12.58±1.82</td>
</tr>
</tbody>
</table>

- Baseline vs TED $p=1.000$
- Baseline vs TED + Novel Device $p=0.004$
- TED vs TED + Novel Device $p=0.006$

![Graph](image)
Results

Left Leg (n=10)

<table>
<thead>
<tr>
<th></th>
<th>Baseline (ml)</th>
<th>TED (ml)</th>
<th>TED + Novel Device (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.43±0.62</td>
<td>6.02±0.43</td>
<td>11.74±1.65</td>
</tr>
</tbody>
</table>

Baseline vs TED \(p=1.000 \)
Baseline vs TED + Novel Device \(p=0.015 \)
TED vs TED + Novel Device \(p=0.014 \)

![Ejected venous velocity in left leg](chart.png)
Results

Right and Left Legs (n=20)

<table>
<thead>
<tr>
<th></th>
<th>Baseline (ml)</th>
<th>TED (ml)</th>
<th>TED + Novel Device (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>6.13±0.43</td>
<td>6.02±0.32</td>
<td>12.16±1.20</td>
</tr>
<tr>
<td>Baseline vs TED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline vs TED + Novel Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TED vs TED + Novel Device</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Baseline vs TED: \(p=1.000 \)
- Baseline vs TED + Novel Device: \(p<0.001 \)
- TED vs TED + Novel Device: \(p<0.001 \)

![Ejected venous velocity in right and left legs](chart)

- Ejected venous velocity in right and left legs.
Discussion

• The addition of the novel device to the class 1 compression stocking has resulted in a significant improvement in venous return.

• These preliminary results demonstrate excellent potential to provide improved care for patients susceptible to VTE.

• The next phase would be to recruit larger sample sizes and investigate clinical efficacy of the novel device in DVT outcome studies.

