Measuring Joint Flexibility in Hallux Rigidus Using a Novel Flexibility Jig

Elizabeth A Cody, MD; Andrew P. Kraszewski, PhD; Anca Marinescu, BA; Grace C. Kunas, BA; Sriniwasan B. Mani, BS; Smita Rao, PT, PhD; Howard H. Hillstrom, PhD; Scott J. Ellis, MD

AOFAS Annual Meeting
July 2017
Disclosures

No conflicts to disclose

Elizabeth A. Cody, MD
Andrew P. Kraszewski, PhD
Anca Marinescu, BA
Grace C. Kunas, BA
Sriniwasan B. Mani, BS
Smita Rao, PT, PhD
Howard H. Hillstrom, PhD
Scott J. Ellis, MD

Our disclosures are in the AOFAS Mobile App
We have no potential conflicts with this presentation

Measuring Joint Flexibility in Hallux Rigidus
Background

- Range of motion (ROM) measurements of the first metatarsophalangeal (MTP) joint play a major role in assessing hallux rigidus
 - However, they provide little information about joint function and are limited by variability in technique
 - Measuring joint flexibility can characterize intrinsic properties of the joint that may prove more clinically meaningful.
Background

- No prior study has assessed hallux MTP joint flexibility in patients with hallux rigidus
- We aimed:
 1. to assess the reliability of a custom flexibility device in patients with and without hallux rigidus and
 2. to compare flexibility between hallux rigidus patients and controls
Methods

• 15 patients with Coughlin stage II or III hallux rigidus indicated for cheilectomy and 20 healthy controls were recruited prospectively

• Each of 2 raters performed a series of seated and standing tests on each subject using the flexibility jig
Methods

Dorsiflexion angle and applied torque were plotted against each other to generate a flexibility curve, from which 5 flexibility parameters were defined:

- **Early flexibility**: slope in the first 25% of motion
- **Late flexibility**: slope in the last 25% of motion
- **Laxity torque**: torque value at which early and late flexibility curves intersect
- **Laxity angle**: angle value at which early and late flexibility curves intersect
- **Torque angle**: angle at which the average laxity torque value of the control patients intersects a given patient’s flexibility curve
Methods

• Differences between (1) hallux rigidus patients and controls and (2) sitting and standing testing positions were assessed with t-tests

• Intra-rater test-retest reliability, remove-replace reliability, and inter-rater reliability were assessed with intraclass correlation coefficients (ICCs)
Results

- Compared to controls:
 - Hallux rigidus (HR) patients were older (average age 53 vs 32 years, \(p < 0.001 \))
 - HR patients had less dorsiflexion (\(p < 0.001 \))
 - **HR patients were less flexible** as measured by 3 of the 5 flexibility parameters:
 - Early flexibility (\(p = 0.027 \))
 - Laxity angle (\(p < 0.001 \))
 - Torque angle (\(p = 0.002 \))

First MTP flexibility in the sitting position. Solid lines represent the mean (thick line) and ±1.0 standard deviation (thin lines) of the control group flexibility. The dashed lines represent the HR group flexibility. Torque is normalized to each cycle maximum as a percentage.
Results

- After controlling for age, only laxity angle and max dorsiflexion differed significantly between HR patients and controls (p < 0.001).
- Generally, patients were more flexible in the seated position than in the standing position.
 - *This difference was more marked in hallux rigidus patients.*
- All flexibility parameters had good or excellent intra- and inter-rater reliability (ICC ≥ 0.60).
Results

Early flexibility and laxity angle measurements are shown for the control group compared to the HR group, in sitting and standing positions.

R1 = Rater 1; R2 = Rater 2.

*Note the difference in flexibility between sitting and standing positions, for both HR patients and controls. *p<0.05
Conclusions

• This is the first study to demonstrate a reliable method of measuring first MTP joint flexibility in patients with hallux rigidus.

• Flexibility, even early in the arc of motion, is impaired in patients with HR.

• Significant differences between sitting and standing measurements suggest that soft tissue tension may be a major contributor to decreased flexibility.
Future Directions

• Further research will be required to determine the clinical utility of flexibility measurements
 • May be used by physical therapists; if flexibility can be improved through therapy, it is possible pain might improve as well
 • May be used by surgeons to predict which patients will benefit most from cheilectomy
• Future studies needed to compare flexibility before and after surgery
 • Need to correlate improvement in flexibility parameters with standardized clinical outcome scores