Rethinking chemoprophylaxis for Total Ankle Arthroplasty

Mr Adam Farrier, Dr Hannah Wilkinson, Ms Jayasree Ramaskhandan, Mr Malik Siddique,

Freeman Hospital, Newcastle upon Tyne, UK
NO CONFLICT TO DISCLOSE

Rethinking chemoprophylaxis for Total Ankle Arthroplasty

Mr Adam Farrier MBChB MRCS
Dr Hannah Wilkinson MBBS
Mr Malik Siddique MBBS FRCS (Ortho)
Ms Jayasree Ramaskhandan

Our disclosures are in the Final AOFAS Mobile App.

We have no potential conflicts with this presentation.
Background

- Total ankle arthroplasty/replacement (TAR) is a relatively uncommon joint replacement procedure.
- Only 631 TAR operations were performed in the UK in 2014. (1)
- Popularity is increasing as a suitable alternative to ankle fusion in patients with end stage ankle arthritis.

- Deep Vein Thrombosis (DVT), which may cause a Pulmonary Embolism (PE) is a rare but serious complication.

- A systematic review of 21 clinical studies concluded patients undergoing TAR had a mean risk of symptomatic DVT following TAR of 3.4% (range 0%-4.8%). (2)

- Subcutaneous injection of Low Molecular Weight Heparin (LMWH) is the most frequent mode of chemoprophylaxis in patients undergoing TAR.

- Treatment with LMWH is
 - costly
 - may delay healing
 - can result in thrombocytopenia and
 - may increase the risk of bleeding postoperatively
 - Bleeding may in turn increase postoperative swelling, pain and also increase the risk of infection (3)
Our practice

- In our department, patients receive VTE prophylaxis only if there are specific indications of increased risk of VTE such as:
 - cardiac risk factors or
 - post-operative air travel
- We also use the Vacuum Assisted Closure (VAC™) device post operatively to:
 - increase the speed of wound healing
 - creating a negative pressure environment aiding the prevention of dehiscence.
- Our patients are not immobilised post operatively but are rested for 5 days with the leg elevated, while ankle movement is encouraged as:
 - Post operative tight casting and immobilisation increases stasis in the venous circulation, which contributes to the formation of VTE.

Our Aim was to investigate the effectiveness of our own peri-operative management and VTE prophylaxis protocol in the prevention of symptomatic VTE, in patients undergoing TAR surgery in our trust.
Methods

• A retrospective case series study
• Large tertiary referral centre

• Data collected from departmental TAR registry
• Patients who underwent TAR between March 2006 and May 2012 were included

• Patients who underwent a TAR procedure were treated according to a pre-defined peri-operative pathway outlined in March 2006

• A post-operative incidence period of 6 months was used
 — To reduce the chance of a VTE being due to anything other than TAR surgery

• The primary outcome measure used was a confirmed VTE, identified using Doppler Ultrasound, or PE detected clinically and confirmed using Computer Topography Pulmonary Angiogram (CTPA)
Peri-operative management of TAR

All patients were treated following the same operative technique and any additional procedures were performed under the same anaesthetic.

Intra-operative – Running horizontal mattress stitch using Vicryl Rapide™ – to prevent wound dehiscence
– Suction drain, to reduce haematoma
– Dressing with wool/crepe and Post operative elevation to reduce swelling
– Movement encouraged, as pain will allow – encouraging calf venous pump

Day 1 post op – Suction drain removed
– VAC - expedites wound closure and healing (negative pressure environment may relieve pain/swelling)

Day 5 post op – Removal VAC
– Dressing, physiotherapy + mobilise PWB
– Discharge

Day 14 post op – Wound review + physiotherapy

6/52 post op – Review for clinical review + check Radiograph
– Patients requested to report any further complications
Results

- 200 patients undergoing TAR were included in the study
 - There were 125 male and 75 female patients
 - 85 Left and 115 Right TAR procedures performed
- Mean age was 61.7 years of age (range 31.0-89.4)
- There were no recorded deaths
- The mean BMI of patients undergoing BMI was 28.4 Kg/m2 (range 18.1-47.5Kg/m2)
- 31 patients (15.5%) were given chemoprophylaxis in the postoperative period on clinical grounds
 - To enable them to travel by air (e.g. aspirin used) or for pre-operative anticoagulant maintenance treatment (e.g. on warfarin for AF, clopidogrel for cardiac stent or CVA)
Results 2

• 187 (73.4%) patients were mobilised immediately post-operatively;
 – In the weight bearing subgroup of patients only 10 (5%) of them had problems and required subsequent immobilisation (figure 1)

• 2 (0.8%) mobilised with partial weight bearing

• 21 (4.6%) mobilised non-weight bearing

• The majority of postoperative problems were caused by
 – postoperative peri-

prosthetic fracture (n=8) and
 – wound break down (n=2)

• All patients were immobilised for 6 weeks and healed without complication.

<table>
<thead>
<tr>
<th>Weight Bearing status</th>
<th>Frequency (n)</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non WB</td>
<td>11</td>
<td>5.5%</td>
</tr>
<tr>
<td>Partial WB</td>
<td>2</td>
<td>1.0%</td>
</tr>
<tr>
<td>WB no problems</td>
<td>177</td>
<td>88.5%</td>
</tr>
<tr>
<td>WB with problems</td>
<td>10</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 1. Post operative weight bearing instructions
Results - 3

• The patients undergoing TAR were not all simple primary TAR.
 – 35% of patients included in the study required additional surgical procedures at the time of TAR surgery
 – 3 (1.5%) patients underwent revision TAR
 – A list of additional procedures is shown in figure 2

• There was a recorded overall incidence of one symptomatic DVT (0.5%).
 – DVT was at 5 ½ months post-surgery
• No (0%) PE was recorded

• Other recorded postoperative complications included fractures (15/200, 7.5%), infection (16/200, 8%) and deep infections requiring arthroscopic washout (5/200, 2.5%)
<table>
<thead>
<tr>
<th>Other Ops</th>
<th>Frequency (n)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcaneal osteotomy</td>
<td>29</td>
<td>14.5%</td>
</tr>
<tr>
<td>Calcaneal fix with screws</td>
<td>2</td>
<td>1.0%</td>
</tr>
<tr>
<td>Fracture fixation</td>
<td>4</td>
<td>2.0%</td>
</tr>
<tr>
<td>Ligament reconstruction</td>
<td>2</td>
<td>1.0%</td>
</tr>
<tr>
<td>Removal of metalwork</td>
<td>15</td>
<td>7.5%</td>
</tr>
<tr>
<td>TA lengthening</td>
<td>12</td>
<td>6.0%</td>
</tr>
<tr>
<td>Revision TAR</td>
<td>3</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plate and screw fixation - malleolus</td>
<td>3</td>
<td>1.5%</td>
</tr>
<tr>
<td>No other ops</td>
<td>130</td>
<td>65.0%</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 2. Additional procedures performed at time of TAR surgery
Conclusion

• The study suggests that our protocol produced low rates of VTE (one DVT)
 – This study is limited by its retrospective nature and the lack of a control group

• We suggest early mobilisation, limb elevation, haematoma evacuation and use of VAC treatment to prevent DVT should be considered an effective primary prophylaxis measure

• Furthermore, this study suggests VTE chemo-prophylaxis should be done on clinicians’ judgement based on individual needs. This will hopefully avoid unnecessary costs and possible complications of anticoagulation, such as:
 – bleeding
 – delayed wound healing and
 – thrombocytopenia

• This study highlights that there is a need for further research into the use of VTE prophylaxis in TAR
1. Registry NJ. National Joint Registry UK > Healthcare providers > Accessing the data > StatsOnline > NJR StatsOnline. 2015.
