Hamstring Autograft for Foot and Ankle Applications

Elizabeth A Cody, MD; Sydney C. Karnovsky, BA; Bridget DeSandis, BA; Andrea Tychanski, PT; Jonathan T. Deland, MD; Mark C. Drakos, MD

AOFAS Annual Meeting
July 2017
Disclosures

Dr. Drakos is a paid consultant for Fast Form and Extremity Medical, neither of whose projects are related to this presentation. Dr. Deland is a paid consultant for Zimmer, Wright Medical, and Arthrex, and he receives royalties from Arthrex, all outside of the current project.

No other conflicts to disclose

Elizabeth A. Cody, MD
Sydney C. Karnovsky, BA
Bridget DeSandis, BA
Andrea Tychanski, PT

Our disclosures are in the AOFAS Mobile App
We have no potential conflicts with this presentation

Hamstring Autografts for Foot and Ankle Applications
Background

- **Hamstring tendon autografts** (gracilis and/or semitendinosus) are an alternative to allograft or local tendon grafts in foot and ankle surgery
 - Mostly for tendon or ligament repairs in which direct repair has failed or is not possible
- **Advantages**:
 - Avoid expense and lower healing potential of allografts
 - Avoid morbidity of using local tendon grafts

Hypothesis: When gracilis and/or semitendinosus are harvested for use in the foot/ankle, morbidity to the knee is limited and foot and ankle outcomes are good
Methods

• All patients who underwent hamstring autograft for foot or ankle applications by a fellowship-trained sports surgeon since 2011 were screened for inclusion
 • Inclusion criteria: age ≥ 18, no knee/hip pathology, at least one year post-op
• 36 patients enrolled an average of 38 months post-op (range, 13-51 months)
 • Average age 45 ± 17 years
 • 53% women
 • Questionnaires completed: Foot and Ankle Outcome Score (FAOS) and Short Form (SF)-12

Harvest of gracilis and semitendinosus
Methods

- Bilateral knee flexion and extension strength were assessed ≥1 year post-op
- Isokinetic testing was performed using a Biodex dynamometer
- Peak flexion and extension torque as well as flexion and extension torque at 30, 70, and 90 degrees were collected
- 2 different testing speeds, 180 and 300 deg/sec
- Torque values reported as percentages of the values reported for the non-operated leg
Results

Tendons harvested:
- Semitendinosus
- Gracilis
- Both tendons

Procedures performed:
- Achilles recon
- Tibialis Anterior recon
- Peroneus brevis recon
- Lateral ligament recon
- Tibialis posterior recon

Hamstring Autografts for Foot and Ankle Applications
Results

- No patients dissatisfied
- All would recommend the surgery to someone else
- Most patients asymptomatic at the harvest site
 - 4 patients (11%) had mild to moderate symptoms at the harvest site
Results

Torque at **180 deg/sec**, reported as % of non-operated leg

<table>
<thead>
<tr>
<th></th>
<th>Flexion</th>
<th>Extension</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak (%), ± SD</td>
<td>96.4 ± 13.5</td>
<td>95.7 ± 10.2</td>
<td>0.775</td>
</tr>
<tr>
<td>30 degrees (%), ± SD</td>
<td>107.9 ± 49.6</td>
<td>106.5 ± 39.2</td>
<td>0.785</td>
</tr>
<tr>
<td>70 degrees (%), ± SD</td>
<td>90.6 ± 15.1</td>
<td>95.3 ± 9.8</td>
<td>0.100</td>
</tr>
<tr>
<td>90 degrees (%), ± SD</td>
<td>83.0 ± 25.8</td>
<td>93.9 ± 15.1</td>
<td>0.029*</td>
</tr>
</tbody>
</table>

![Graph showing torque comparison between flexion and extension at 30, 70, and 90 degrees.](image)

* *p < 0.05

Hamstring Autografts for Foot and Ankle Applications
Results

Torque at 300 deg/sec, reported as % of non-operated leg

<table>
<thead>
<tr>
<th>Flexion</th>
<th>Extension</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak (%, ± SD)</td>
<td>96.0 ± 18.1</td>
<td>98.9 ± 13.2</td>
</tr>
<tr>
<td>30 degrees (%, ± SD)</td>
<td>91.5 ± 36.3</td>
<td>100.6 ± 39.4</td>
</tr>
<tr>
<td>70 degrees (%, ± SD)</td>
<td>92.6 ± 23.1</td>
<td>99.0 ± 14.5</td>
</tr>
<tr>
<td>90 degrees (%, ± SD)</td>
<td>96.6 ± 70.2</td>
<td>94.2 ± 27.0</td>
</tr>
</tbody>
</table>

![Graph showing flexion and extension torque at various angles](image.png)
Results

- Isokinetic testing data summary:
 - No significant difference between peak relative flexion and extension strength
 - Flexion strength at higher degrees of flexion (90°) was significantly lower compared to extension strength, when testing performed at lower speed
 - When testing at low speed, flexion strength was significantly greater at 30° and 70° compared to 90°
 - No difference between patients with gracilis, semitendinosus, or both tendons harvested
Limitations

- No pre-operative isokinetic testing for comparison
 - As substitute, flexion strength was compared to extension strength, which should not be affected by surgery
- Small number of patients
 - Unable to identify effect of graft harvested (gracilis, semitendinosus, or both)
 - Possibly not enough power to detect smaller deficits in flexion strength
Conclusions

- When used for foot and ankle surgery, hamstring autografts result in good functional outcomes and high patient satisfaction.
- Few patients experience symptoms from harvest site at follow-up.
- Knee flexion strength may be decreased at higher degrees of flexion, but this is not likely to be clinically significant.