Achilles Tendon Allograft Incorporated with Autologous Mesenchymal Stem Cells: an animal model

1Michael Aynardi, MD; 2Talal Zahoor, MD; 3Reed Mitchell, MS; 3Zijun Zhang, PhD/MD; 3Lew Schon, MD

1Pennsylvania State University, Hershey, PA
2Texas Tech University, Permian Basin, TX
3Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
Disclosure

The authors declare no conflict of interests related to this presentation.
Our full disclosures are listed in AOFAS mobile app.

Michael Aynardi, MD
Talal Zahoor, MD
Reed Mitchell, MS
Zijun Zhang, PhD/MD
Lew Schon, MD
Achilles Tendon Allograft Orthotopic Transplantation

- It is challenging to reconstruct Achilles tendon, because of the large size of the tendon and the limitation in Achilles autograft.
- Allograft of Achilles tendon does not have restrain of supply.
- The biology, particularly revitalization, biomechanics and function of Achilles allograft orthotopic transplantation, however, are unknown.
Achilles Tendon Allograft Orthotopic Transplantation

Study Goals:
1) Investigating the function, histology and mechanical properties of orthotopically transplanted Achilles allograft in rats and
2) The effects of supplementation of autologous mesenchymal stem cells on Achilles allograft.
Achilles Tendon Allograft Orthotopic Transplantation

Study Design:

1. Achilles allografts (n = 24) were harvested from 12 donor rats (approved by IACUC) and kept at -80°C before transplantation.

2. Autologous mesenchymal stem cells (MSCs): Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of MSCs. MSCs were characterized and cultured for tenogenic differentiation.
Achilles Tendon Allograft Orthotopic Transplantation

Study Design

- Rats (n = 10)
- Resection of native Achilles tendon
- Achilles allograft + autologous MSCs
- Gait analysis (weekly)
- Biomechanical testing
 - 4 Weeks
- Achilles allograft
- Histology
 - 4 Weeks
Gait: The operated (left) limbs reduced paw print intensity about 20% from the baseline in the Allo group and 30% in the Allo+MSC group in week 1 (A). At week 1, the stance time of the limbs received Achilles allograft was reduced from week 0 in both groups, with Allo+MSC group to a greater degree (B).

Allo group = rats received Achilles allograft; Allo+MSC group = rats received Achilles allograft, which was implemented with autologous MSCs; R = right, non-operated limbs; L = left, transplanted Achilles allograft
Achilles Tendon Allograft Orthotopic Transplantation

Gait: The duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs in both Allo and Allo+MSC groups was reduced, compared with its baseline, through weeks 1 to 4 (C). At week 4, print intensity, stance time and duty cycle were improved in both Allo and Allo+MSC groups (>85% baseline; D).

Allo group = rats received Achilles allograft; Allo+MSC group = rats received Achilles allograft, which was implemented with autologous MSCs; R = right, non-operated limbs; L = left, transplanted Achilles allograft
Gait: Imbalance of stance was calculated as the difference of duty cycle between the non-operated limb and operated limb. While the imbalance of stance was not significant in the Allo group (E), it was significantly increased in the Allo+MSC group in weeks 1 and 2 but diminished in weeks 3 and 4 (F).
Histology:
Cellularity was generally higher in the Achilles allograft in Allo+MSC group than Allo group (average cellularity grade 2.7±0.5 vs 1.7±0.5).
Histology: Type III collagen stained by picrosirius Red was more evenly distributed in the Allo+MSC group than in the Allo group.
Achilles Tendon Allograft Orthotopic Transplantation

Biomechanics: Maximum load of failure was not significantly different among Allo (27±11N), Allo+MSC (28±6N) and normal Achilles tendon (12±10N) groups.

Conclusion

1) Orthotopically transplanted Achilles allograft healed with host tissues, regained strength and largely restored Achilles function in 4 weeks in rats.
2) Incorporation of MSCs repopulated Achilles allograft. Large animal models, with long-term follow up, may be more appropriate to reveal the full benefits of supplementation of MSCs to Achilles allograft.